Tehnike merenja podataka za neutronske nuklearne reakcije i eksperimentalno određivanje parametara strukture atomskog jezgra

> Nikola Jovančević Departman za Fiziku, PMF, Novi Sad

Sadržaj

- 1. Važnost merenja nuklearnih podataka; baze podataka
- 2. Efikasni presek za neutronima indukovanu fisiju ²⁴²Pu u energetskom opsegu od 15 MeV do 20 MeV
- 3. Funkcije efikasnih preseka za neutronske reakcije na izotopima renijuma u energetskom opsegu 13.0 -19.5 MeV
- 4. Modelovanje neutronskog spektra na osnovu aktivacione analize
- 5. Određivanje parametara nuklearne strukture metodom merenja dvostepenih gama kaskada nakon neutronskog zahvata

Potreba za nuklearnim podacima

Osnovna istraživanja

Struktura atomskog jezgra, nukearne reakcije, neutrinska fizika

Medicina

primena radionuklida u dijagnostičke i terapijske svrhe

- Astrofizika
- IV generacija nuklearnih reaktora

novi dizajn fisionih i prvi fuzioni reaktor ITER

Potreba za nuklearnim podacima

- Oko 10000 uobičajenih nuklearnih reakcija
- IAEA 255 neutronskih reakcija važnih za različite primene
- 100 od njih ima 5 ili manje merenih vrednosti za efikasni presek

Baze podataka

- https://www-nds.iaea.org/
- <u>https://www.nndc.bnl.gov/</u>

	Atomic Energy Agency	MALL V		IAEA.org NDS Mission	About Us Mirrors: India China	
Provided	by the Nuclear Data Section			Search	Go	
Hot Topics » ENDF/B-V	/II.1 • TENDL-2014 • JENDL-4.0u2 • IBANDL News » Da	amage cross section database extended by SS-316 and Eurofer				
Request	New NDS Mirror-site in Russia: http://www-nds.atomstandard.ru/urresolved Resonance Energy Range [page] GRUCON - ENDF Data Processing Package [page]					
data, codes, etc.	Main All Reaction Data Structure & Decay	by Applications Doc & Codes Index Events Links	s] News		♣ Events «1:2»	
Quick Links ADS-Lib Atomic Mass Data Centre	EXFOR Experimental nuclear reaction data	LiveChart of Nuclides		CINDA Nuclear reaction bibliography		
CINDA Charged particle reference cross section	ENDF Evaluated nuclear reaction libraries ENSDF evaluated nuclear structure and decay data (+XUNDL) **			NSR Nuclear Science References =	7FP GENTLE course : Nuclear data processing	
DROSG-2000 DXS EMPIRE-3.2	NuDat 2.6 selected evaluated nuclear structure data **	RIPL reference parameters for nuclear model calculations	IBANDL Ion Beam Analysis Nuclear Data Library	Charged particle reference cross section Beam monitor reactions	and use in induced application November 14-18, 2016 EC-JRC Geel, Belgium	
ENDF Archive ENDF Retrieval	PGAA Prompt gamma rays from neutron capture	FENDL Fusion Evaluated Nuclear Data Library	Photonuclear cross sections and spectra up to 140MeV	IRDFF International Reactor Dosimetry and Fusion File		
ENDF-6 Codes ENDF-6 Format ENDVER	NAA Neutron Activation Analysis Portal	Safeguards Data recommendations, August 2008	Medical Portal Data for Medical Applications	Standards - Neutron cross-sections, 2006 - Decay data, 2005		
ENSDF ENSDF ASCII Files ENSDF programs	*Database at the IAEA, Vienna **Database at the US NNDC IAEA Nuclear Data Section					
EXFOR Electron and Photon Interaction Data	IAEA-NDS Image: Coordinated Molecular Newsletters Coordinated Nuclear Rescirch Nuclear Rescirch Nuclear Structure Technical Documents Computer IAEA-NDS Molecular Norkshops Newsletters Coordinated Nuclear Rescirch Nuclear Structure Technical Documents Computer IAEA-NDS Molecular Norkshops Nuclear Rescirch Nuclear Structure Nuclear Structure Technical Documents Computer INDC Reports Network Network Network Network Publications Computer					
		© Copyright 2007-2016, International	Atomic Energy Agency - Nuclear Data Section.			

Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria

Telephone (+431) 2600-0. Facsimile (+431) 2600-7. E-mail: nds.contact-point@iaea.org. Read our Disclaimer

Efikasni presek za neutronima indukovanu fisiju ²⁴²Pu u energetskom opsegu od 15 MeV do 20 MeV

• JRC - IRMM, Geel, Belgija

⁷Li(p,n)⁷Be, En: 0 - 5.3 MeV T(p,n)³He, En: 0 - 6.2 MeV D(d,n)³He, En: 1.8 - 10.1 MeV T(d,n)⁴He, En: 12.1 - 24.1 MeV

Efikasni presek za neutronima indukovanu fisiju ²⁴²Pu u energetskom opsegu od 15 MeV do 20 MeV

- > A twin Frisch-grid ionization chamber.
- > Efikasni presek za 242 Pu(n,f) je normiran na efikasni presek za 238 U(n,f).
- > ²⁴²Pu 0.625 mg; ²³⁸U 0.861 mg

Efikasni presek za neutronima indukovanu fisiju ²⁴²Pu u energetskom opsegu od 15 MeV do 20 MeV

• **Ozračivanje** ³H(d,n)⁴He, Ti–³H target of 2.293 mg cm⁻².

Measurement No.	E _i (MeV)	E _n (MeV)	<i>t</i> (s)
1	0.800(11)	15.28(30)	15161.0(5)
2			58149.0(5)
3	1.000(11)	16.16(20)	2906.0(5)
4			13164.0(5)
5	1 500(11)	47.22(20)	19163.0(5)
6		17.22(30)	15954.0(5)
7	2,000(11)	18.02(20)	62363.0(5)
8	2.000(11)	18.02(20)	55991.0(5)
9	2 500(11)	(0,7,(20))	56353.0(5)
10	2.500(11)	18.74(30)	63436.0(5)
11	3.000(11)	19.81(18)	47811.0(5)

Efikasni presek za neutronima indukovanu fisiju ²⁴²Pu u energetskom opsegu od 15 MeV do 20 MeV

- Obrada eksperimentalnih podataka
- Signali sa detektora su tretirani za korekciju osnovne linije, balistički deficit i α background korekcije.
- Visine signala su korigovane za neefikasnost grida, alfa pile-up i ekstrapolaciju do nule.

Efikasni presek za neutronima indukovanu fisiju ²⁴²Pu u energetskom opsegu od 15 MeV do 20 MeV

- NAXSUN metod
- Merenja funkcije efikasnih preseka neutronima indukovane reakcije na Re
 - 1. Materijali
 - 2. Neutronski spektar i ozračivanje
 - 3. Gama spektroskopsko merenje
- Rezultati
- Renijum (¹⁸⁵Re (37.4%) and ¹⁸⁷Re (62.6%))
 - otporan na visoke temperature i koroziju
 - koristi se za dijagnostiku i tretman tumora
 - Re/Os cosmos-chronometry
- Nedostatak zadovoljavajućih eksperimentalnih podataka za neutronima indukovane nuklearne reakcije na Re.

```
<sup>187</sup>Re(n, α)<sup>184</sup>Ta, <sup>187</sup>Re(n, 2n)<sup>186</sup>Re, <sup>185</sup>Re(n, 2n)<sup>184</sup>Re, <sup>187</sup>Re(n, p)<sup>187</sup>W i <sup>185</sup>Re(n, 3n)<sup>183</sup>Re for E<sub>n</sub> = 13.0 - 19.5MeV
```

NAXSUN metod (Neutron Activation X-Section determined using UNfolding)

• The maximum entropy code MAXED

$$S = -\int \left\{ \sigma(E) \ln \left(\frac{\sigma(E)}{\sigma_{def}(E)} \right) + \sigma_{def}(E) - \sigma(E) \right\} dE$$

GRAVEL iterative algorithm

$$\sigma_{i}^{J+1} = \sigma_{i}^{J} \cdot f\left(A_{k}, \varepsilon_{k}, \Phi_{ki}, \sigma_{i}^{J}\right) \qquad f = \exp\left(\frac{\sum_{k}^{W_{ik}^{J}} \log\left(\frac{A_{k}}{\sum \Phi_{ki} \sigma_{i}^{J}}\right)}{\sum_{k}^{W_{ik}^{J}}}\right) \qquad W_{ik}^{J} = \frac{\Phi_{ki} \cdot \sigma_{i}^{J}}{\sum_{i}^{P} \Phi_{ki} \sigma_{i}^{J}} \frac{A_{k}^{2}}{\varepsilon_{k}^{2}}$$

- Široko-energetski neutronski snopovi (energetski se preklapaju)
- Ozračivanjem diskova na različitim uglovima relativno na snop jona, uzorak je izložen totalnom neutronskom spektru u širokom energetskom opsegu.
- Reakcije za produkciju neutrona ⁷Li(p,n)⁷Be, En: 0 5.3 MeV

```
T(p,n)<sup>3</sup>He, En: 0 - 6.2 MeV
D(d,n)<sup>3</sup>He, En: 1.8 - 10.1 MeV
T(d,n)<sup>4</sup>He, En: 12.1 - 24.1 MeV
```


Uređaj za ozračivanje

Neutronsko polje i ozračivanje

- JRC-IRMM Van de Graff akcelerator
- 6 Re-diskova (dijametar: 20 mm, 5 mm debljina) ozračeni svaki na različitoj neutronskoj energiji u intervalu od 0° do 80° relativno na snop
- 41 različitih pozicija u koracima od po 2°
- Jedan disk je ozračen na fiksnoj poziciji 0° pri inicijalnoj energiji neutrona od 18.1 MeV

Disk No.	E _i (MeV)	E _n (MeV)	t (s)
1	3.3	19.78(20)	86921(10)
2	2.5	18.71(20)	248402(10)
3	2.0	18.10(28)	157632(10)
4	2.0	18.10(28)	166564(10)
5	1.5	17.16(30)	231958(10)
6	1.0	15.9(8)	243608(10)
7	0.8	15.26(13)	144831(10)

Neutronsko polje i ozračivanje

 neutronski spektri simulirani (TARGET kod) i korigovani za vremena ozračivanja i promene struje akceleratora

Monitoring neutronskog fluksa tokom ozračivanja

• Dve jonizacione komore (sa ²³⁵U i ²³⁸U metama), BF3 brojač

Gama spektroskopska merenja

- Prvo merenje 20 min nakon ozračivanja
- Drugo merenje nakon dva dana HADE S් 👷 🚥
- Treće merenje nakon 2 meseca HADES

HADES

Gama spektroskopska merenja

> Specifična aktivnost po atomu aktiviranog izotopa mete, A_k na kraju aktivacije

$$A_{k} = \frac{CM}{N_{a}m\varepsilon P_{\gamma}I_{A}} \left(\frac{\lambda}{1-e^{-\lambda t_{m}}}\right)e^{\lambda t_{c}}$$

Desetier	E _γ [keV] (l _{γ, %})	Disk No.1	Disk No.2	Disk No.3	Disk No.4	Disk No.5	Disk No.6	Disk No.7
Reaction		A _k (10 ⁻²⁴ Bq/atom)						
¹⁸⁷ Re(n,2n) ¹⁸⁶ Re	137.2 (9.4)	3430(50)	9850(14)	4490(60)	4790(70)	14680(210)	26800(400)	24700(300)
¹⁸⁷ Re(n,a) ¹⁸⁴ Ta	414.0 (73.9)	29.10(40)	23.10(30)	16.72(23)	37.30(50)	32.00(40)	32.40(50)	31.20(40)
¹⁸⁵ Re(n,2n) ¹⁸⁴ Re	903 (37.9)	334.0(50)	1315(19)	676(9)	733(10)	2250(30)	3600(50)	3260(50)
¹⁸⁵ Re(n,3n) ¹⁸³ Re	162.3 (22.3)	165.6(29)	187(3)	119.0(20)	318(6)	237(4)	113.4(20)	67.2(12)
¹⁸⁷ Re(n,p) ¹⁸⁷ W	618.3 (7.6)	45.5(8)	66.1(11)	50.3(8)	82.4(14)	118.1(20)	93.5(16)	96.8(17)

- Rezultati
- Efikasni preseci za normalizaciju pri energiji od 18.1 MeV

Rezultati

• Efikasni preseci za normalizaciju pri energiji od 18.1 MeV

Rezultati

• Efikasni preseci za normalizaciju pri energiji od 18.1 MeV

Rezultati

• Definisanje početne funkcije za unfolding postupak

1. Srednji efikasni presek $\langle \sigma_k \rangle \approx \frac{A_{sk}}{\sum_i \Phi_{ki}}$

2. Odgovarajuća srednja energija neutrona $\langle E \rangle_k \approx \frac{\sum_{i} \Phi_{ki} \cdot E_i}{\sum \Phi_{ki}}$

3. Linearna interpolacija zavisnosti $\langle \sigma_k \rangle$ od $\langle E \rangle_k$

Rezultati

• Definisanje početne funkcije za unfolding postupak

Rezultati

- Unfolded excitation function
- Ujedinjene vrednosti rezultata GRAVEL i MAXED koda

Rezultati

Unfolded excitation function

Rezultati

Unfolded excitation function

- Pouzdani eksperimentalni podaci o PFNS su veoma važni za bolje razumevanje procesa fisije kao i dizajn inovativnih reaktora.
- Razumevanje ²³⁵U PFNS je od velike važnosti za ekonomičnu i sigurnu upotrebu nuklearne energije.

- Neslaganja između eksperimentalnih i modeliranih podataka
- Neslaganja između mikroskopskih i makroskopskih podataka
- Modeliranje neutronskog spektra na osnovu aktivacione analize može dati neke nove informacije.

- Računate srednje vrednosti efikasnog preseka za određene neutronske reakcije, korišćenjem diferencijalnih eksperimentalnih PFNS, u mnogim slučajevima ne mogu na zadovoljavajući način reprodukovati integralna merenja efikasnih preseka.
 - C/E = Calc. / Exp. spectrum-averaged cross sections $\int \sigma(E) N(E) dE / \int N(E) dE$

Odnos računatih i eksperimentalnih srednjih efikasnih preseka za ²⁵²Cf and ²³⁵U

Spectrum unfolding

•DONA detector

	Disk material	Diameter (mm)	thickness (mm)	inner hole	mass (g)	
1	Ті	20	5	Yes	7	
2	Fe	20	5	Yes	12,1	
3	Ni	20	5	Yes	13,8	
4	Со	20	5	Yes	13,6	
5	AI	20	5	Yes	4,2	
6	Zr	20	5			
7	In	20	5	No	11,4	
8	Au-disk	20	5	No		
9	Mg	20	5	Yes	2,7	
10	Au-foil	20	1	No		
11	Au-foil in Cd	20	1	No		

Unfolding postupak

$$M_k + \varepsilon_k = \sum_i \sigma_{ik} \Phi_i$$
 $k = 1,10;$ $i = 1,100$

$$\begin{pmatrix} M_k = merena \ aktivnost \\ \epsilon_k = greška \ merenja \\ \sigma_{ki} = efikasni \ presek \\ \Phi_i = neutronski \ spektar$$

DONA test i validacija

- Testiranje DONA metoda sa standardnim neutronskim spektrom nakon spontane fisije ²⁵²Cf
- 2 DONA diska
- 42 dana ozračivanja
- Neutronski fluks: ~220 ncm⁻²s¹
- Rastojanje izvor detektor: 7.7 cm

• Gama spektroskopsko merenje - HADES

Activation reaction	<e> [MeV]</e>	Half life	Main gamma-ray line [keV]	A _{sk} [10 ⁻²⁴ Bq atom ⁻¹]
¹⁹⁷ Au(n,g) ¹⁹⁸ Au, foil	0.72	2.68 d	411	26.2(25)
¹⁹⁷ Au(n,g) ¹⁹⁸ Au, foil Cd shielded	0.72	2.68 d	411	26.3(25)
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au foil	10.5	6.18 d	333	1.45(19)
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au foil Cd shielded	10.5	6.18 d	333	1.37(9)
¹⁹⁷ Au(n,g) ¹⁹⁸ Au	0.72	2.68 d	411	26.2(23)
¹¹⁵ In(n,n') ¹¹⁵ In	2.67	4.49 h	336	38.3(32)
⁴ /Ti(n,p) ⁴ /Sc	3.82	3.35 d	159	3.84(25)
^{>®} Ni(n,p) ^{>®} Co	4.2	70.8 d	811	20.6(14)
⁵⁴ Fe(n,p) ⁵⁴ Mn	4.28	312 d	835	18.2(12)
^{>y} Co(n,p) ^{>y} Fe	5.94	44.5 d	1099	0.309(14)
⁴ºTi(n,p)⁴ºSc	6.08	3.35 d	889	2.81(18)
^{∠₄} Mg(n,p) ^{∠₄} Na	8.26	15.0 h	1369	0.430(28)
⁴ჾTi(n,p)⁴ჾSc	8.35	1.82 d	159	0.083(3)
²′Al(n,a)²⁴Na	8.67	15.0 h	1369	0.224(15)
⁹⁶ Zr(n,2n) ⁹⁵ Zr	10.2	64.03 d	724	8.82(64)
¹⁹⁷ Au(n,2n) ¹⁹⁶ Au	10.5	6.18 d	333	1.20(10)
^{۶۶} Co(n,2n)۶ ⁸ Co	13.1	70.9 d	811	0.079(5)
⁹⁰ ∠r(n,2n) ⁸⁹ ∠r	14.4	3.27 d	909	0.064(4)

Poređenje merenih i računatih vrednosti

Neutronski spektar

- Unfolding
 - 1) Maxwellian spectrum with T=1.42 MeV
 - 2) Mannhart calculated ²⁵²Cf neutron spectrum

Poređenje dobijenog spektra sa standardnim ENDF 252Cf spektrom

- Neophodno je dobijanje pouzdanih eksperimentalnih podataka za gustinu stanja jezgra i funkciju jačine prelaza
- Razvoj metoda za određivanje ρ i Γ
- Glavni problem : FWHM >> D_i
- Metod merenja dvostepenih gama kaskada
- Model kaskadnog gama raspada
- Rezultati za 43 nuklida od ²⁸Al do ²⁰⁰Hg

- Dubna metod (FLNF, JINR)
- Merenje dvostepenih gama kaskada nakon neutronskog zahvata (n,2γ)

- Merenje dvostepenih gama kaskada nakon neutronskog zahvata (n,2γ)
- HPGe detektori u koincidentnom režimu merenja

Intenzitet dvostepenih gama kaskada:

$$I_{\gamma\gamma}(E_{1}) = \sum_{\lambda,f} \sum_{i} \frac{\Gamma_{\lambda i}}{\Gamma_{\lambda}} \frac{\Gamma_{if}}{\Gamma_{i}} = \sum_{\lambda,f,i} \frac{\Gamma_{\lambda i}}{\Gamma_{\lambda i}} \rho_{\lambda} \Delta E_{i} \frac{\Gamma_{if}}{\langle \Gamma_{if} \rangle m_{if}}$$

Interativni metod

- Korišćenjem iterativnog postupka sa slučajno odabranim funcijama ρ i Γ , moguće je dobiti najverovatnije vrednosti gustine stanja i radijacione jačine.
- N vrednosti eksperimentalnih intenziteta kaskada mogu uvek biti konvertovani u $\sim 2N$ vrednosti ρ i Γ u određenom intervalu:

$$\rho_1 \le \rho \le \rho_2 \qquad \qquad \Gamma_1 \le \Gamma \le \Gamma_2$$

Zaključak

- Nuklearni podaci su važni kako za fundamentalna tako i za primenjena istraživanja.
- Postoji velika potreba za novim merenjima efikasnih preseka za različite neutronske nuklearne reakcije.
- Neophodno je bolje pozavanje PFNS.
- Dosadašnji podaci nameću potrebu za razvojem novih eksperimenata za određivanje parametara strukture atomskog jezgra.

HVALA VAM NA VAŠOJ PAŽNJI!

Phenomenological and theoretical representations are combined

The model level density

$$\rho_{l} = \frac{(2J+1)\exp(-(J+1/2)^{2}/2\sigma^{2})}{2\sqrt{(2\pi)}\sigma^{3}} \Omega_{n}(E_{ex}) \qquad \Omega_{n}(E_{ex}) = \frac{g^{n}(E_{ex}-U_{l})^{n-1}}{((n/2)!)^{2}(n-1)!}.$$

The phenomenological coefficient C_{col} of the collective enhancement:

$$C_{col} = A_{l} \exp(\sqrt{(E_{ex} - U_{l})/E_{v}} - (E_{ex} - U_{l})/E_{\mu}) + \beta$$

 $g=6a/\pi^2$ is the density of single-particle states

 $a(A,Z,E_{ex}) = \tilde{a} (1 + ((1 - exp(-\gamma E_{ex})) \delta E/E_{ex}))$ $\tilde{a} = 0.114A + 0.162A^{2/3} \text{ and } \gamma = 0.054$

The model for E1- and M1-transition strength functions $k(E1,E_{\gamma}) + k(M1,E_{\gamma}) = w \frac{1}{3\pi^{2} \mathbf{r}^{2}} \frac{\sigma_{G} \Gamma_{G}^{2}(E_{\gamma}^{2} + \kappa 4\pi^{2}T^{2})}{(E_{\gamma}^{2} - E_{G}^{2})^{2} + E_{\gamma}^{2} \Gamma_{\gamma}^{2}} + P\delta^{-} \exp(\alpha_{p}(E_{\gamma} - E_{p})) + P\delta^{+} \exp(\beta_{p}(E_{p} - E_{\gamma}))$

For our proposed model the set of fitted parameters is as following:

1) the break up thresholds energies U_l up to l=4,

2) the E_{μ} and E_{ν} parameters, which are common for all Cooper pairs,

3) the mutually independent **parameters** A_l of the density of vibrational levels above the break up threshold U_l ,

4) the coefficients w, κ and β ,

5) the ratio *r* of negative parity and the total level density.

Strength function for ¹⁵⁶Gd. Top panel: solid points are the best fit of the strength function of *E*1transitions; open points are the best fit of the strength function of *M*1-transitions. Lower panel: solid points are a sum of *E*1- and *M*1- strength functions; solid line is he sum of strength functions with taking into accounts condition $\rho_{mod}/\rho_{exp.}$

Dependence of break-up thresholds of the second (points) and the third (squares) Cooper pair on the nuclear mass A. Full points are even-even, half-open points are even-odd and open points are odd-odd compound nuclei. Triangles show the mass dependence of B_n/Δ_0 .

Dependence of E_{μ} and E_{ν} model parameters on the nuclear mass A. Full points are even-even, half-open are even-odd and open points are odd-odd nuclei.

Mass dependence of the ratio of the level density with negative level parity to the total level density in the point E_d (upper border of the level discrete region) and its middle value for even-even nuclei (solid lines), even-odd (dashed lines) and odd-odd nuclei(dotted lines).